|
Subaru Forester1997-2005 года выпускаРемонт и эксплуатация автомобиля |
|
Субару Форестер + Автомобили Subaru Forester + Инструкция по эксплуатации + Текущее обслуживание + Двигатель + Системы охлаждения, отопления + Системы питания и выпуска + Электрооборудование двигателя - Системы управления двигателем Спецификации Система бортовой диагностики (OBD) - принцип функционирования и коды неисправностей. Сигналы в цепях управления ЕСМ - общая информация, оценка состояния и замена Информационные датчики, реле и исполнительные устройства - общая информация Система улавливания топливных испарений (EVAP) Система рециркуляции отработавших газов (EGR) Система управляемой вентиляции картера (PCV) Кондуктор заливной горловины топливного бака Каталитический преобразователь - общая информация, проверка состояния и замена + Коробка переключения передач + Сцепление, трансмиссионная линия + Тормозная система + Подвеска и рулевое управление + Кузов + Бортовое электрооборудование |
Система бортовой диагностики (OBD) - принцип функционирования и коды неисправностей. Сигналы в цепях управления Сведения о диагностических приборахПроверка исправности функционирования компонентов систем впрыска и снижения токсичности отработавших газов производится при помощи универсального цифрового измерителя (мультиметра). Использование при диагностике рассматриваемых систем цифрового мультиметра с высоким импедансом существенно повышает точность производимых в низковольтовом диапазоне измерений
Использование цифрового измерителя предпочтительно по нескольким причинам. Во-первых, по аналоговым приборам достаточно сложно (порой, невозможно), определить результат показания с точностью до сотых и тысячных долях, в то время как при обследовании контуров, включающих в свой состав электронные компоненты, такая точность приобретает особое значение. Второй, не менее важной, причиной является тот факт, что внутренний контур цифрового мультиметра, имеет достаточно высокий импеданс (внутреннее сопротивление прибора составляет 10 мОм). Так как вольтметр подсоединяется к проверяемой цепи параллельно, точность измерения тем выше, чем меньший ток будет проходить через собственно прибор. Данный фактор не является существенным при измерении относительно высоких значений напряжения (9 ÷ 12 В), однако становится определяющим при диагностике выдающих низковольтные сигналы элементов, таких, как, например, l-зонд, где речь идет об измерении долей вольта. Параллельное наблюдение параметров сигналов, сопротивлений и напряжений во всех цепях управления возможно при помощи разветвителя, включенного последовательно в разъем блока управления двигателем. При этом на выключенном, работающем двигателе или во время движения автомобиля, производится измерение параметров сигналов на клеммах разветвителя, из чего делается вывод о возможных дефектах. Для диагностики электронных систем двигателя, автоматической трансмиссии, ABS, SRS применяются специальные диагностические сканеры или тестеры с определенным картриджем, предназначенные для работы с системой бортовой диагностики второго поколения OBD II, специальный сканер Subaru Select Monitor (SSM) или персональный компьютер со специальным кабелем и программой броузером OBD (www.obd-2.com, www.obd-2.de). Универсальный адаптер K-L-line
Подключение персонального компьютера к диагностическому разъему
Универсальный адаптер K-L-line (www.autoelectric.ru), служит для согласования сигналов порта RS-232 и интерфейсов ISO-9141 (K-line) и ALDL. К разъемам адаптера могут подключаться различные кабели, необходимые для диагностики конкретной марки автомобиля. Установленные в адаптере переключатели и элементы индикации позволяют выбирать необходимые режимы работы и примерно оценивать работу выходных линий. Так, свечение зеленого светодиода с маркировкой L-line, свидетельствует о соединении линии L с корпусом автомобиля. Свечение красного светодиода с маркировкой K-line указывает на высокий потенциал, который присутствует в этот момент на линии К. При установленной связи с автомобилем мигание индикаторов может быть незаметно для глаза из-за высокой скорости обмена. Подключение к компьютеру производится непосредственно в 25-контактный COM-порт или с помощью “Кабеля RS-232 25 конт. - 9 конт.” в 9-контактный СОМ-порт. Некоторые сканеры, помимо обычных операций диагностики, позволяют, при соединении с персональным компьютером, распечатывать хранящиеся в памяти блока управления принципиальные схемы электрооборудования (если заложены), программировать противоугонную систему и блоки управления, наблюдать сигналы в цепях автомобиля в реальном масштабе времени. Бесплатную версию броузера OBD II для диагностики Вашего автомобиля Вы можете также скачать с нашего сайта arus.spb.ru Считывание записанных в память системы самодиагностики кодов неисправностей на некоторых моделях может быть произведено также по индикатору “Проверьте двигатель” на приборной доске. Назначение выводов диагностического разъема.
Общее описание системы OBD II В состав системы OBD входят несколько диагностических устройств, производящих мониторинг отдельных параметров систем снижения токсичности и фиксирующих выявленные отказы в памяти бортового процессора в виде индивидуальных кодов неисправностей. Система производит также проверку датчиков и исполнительных устройств, контролирует циклы обслуживания транспортного средства, обеспечивает возможность запоминания даже кратковременно возникающих в процессе работы сбоев и очистки блока памяти. Описываемые в настоящем Руководстве модели оборудованы системой бортовой диагностики (OBD). Основным элементом системы является бортовой процессор, чаще называемый электронным модулем управления (ЕСМ), либо модулем управления функционированием силового агрегата (РСМ). РСМ является мозгом системы управления двигателем. Исходные данные поступают на модуль от различных информационных датчиков и других электронных компонентов (выключателей, реле и т.д.). На основании анализа поступающих от информационных датчиков данных и в соответствии с заложенными в память процессора базовыми параметрами, РСМ вырабатывает команды на срабатывание различных управляющих реле и исполнительных устройств, осуществляя тем самым корректировку рабочих параметров двигателя и обеспечивая максимальную эффективность его отдачи при минимальном расходе топлива. Считывание данных памяти процессора OBD-II производится при помощи специального сканера, подключаемого к 16-контактному диагностическому разъему считывания базы данных, расположенному под панелью приборов с водительской стороны автомобиля.
Считывание кодов неисправностей Информационное содержание разрядов кода
При выявлении неисправности, повторяющейся подряд в двух поездках, РСМ выдает
команду на включение вмонтированной в приборный щиток контрольной лампы “Проверьте
двигатель”, называемой также индикатором отказов. Не запуская двигатель, включите зажигание, - контрольная лампа “Проверьте двигатель” должна загореться, в противном случае ее следует заменить, и погаснуть после запуска двигателя. Лампа может не гаснуть по причине неполностью закрытой пробки горловины топливного бака. Проверив исправность состояния лампы и закрытое состояние пробки горловины, вновь прогрейте двигатель и выключите зажигание. Замкните тестовый разъем. Заведите автомобиль и проедьтесь 1 мин со скоростью более 10 км/час, поочередно включая все передачи. Остановитесь, не выключая двигатель. На 40 сек поднимите обороты до 2000 в мин. Считайте мигающие коды (обратитесь к Спецификациям). Очистка памяти OBD При занесении кода неисправности в память РСМ на приборном щитке автомобиля загорается контрольная лампа “Проверьте двигатель”. Код остается записанным в память модуля. Для очистки памяти ЕСМ подключите к системе сканер и выберите в его меню функцию CLEARING COEDS (Удаление кодов). Далее следуйте указаниям, высвечиваемым на приборе, либо сразу же на 30 секунд извлеките из своего гнезда в монтажном блоке предохранитель EFI. Альтернативно очистка памяти системы может быть произведена путем снятия плавкой вставки (главного предохранителя системы бортового электропитания), можно также просто отсоединить от батареи положительный провод.
Применение осциллографа для наблюдения сигналов в цепях систем управления Цифровые мультиметры отлично подходят для проверки находящихся в статическом состоянии электрических цепей, а также для фиксации медленных изменений отслеживаемых параметров. При проведении же динамических проверок, выполняемых на работающем двигателе, а также при выявлении причин спорадический сбоев совершенно незаменимым инструментом становится осциллограф. Некоторые осциллографы позволяют сохранять осциллограммы во встроенном модуле памяти с последующим выводом результатов на печать или перекачкой их на носитель персонального компьютера уже в стационарных условиях. Осциллограф позволяет наблюдать периодические сигналы и измерять напряжение, частоту, ширину (длительность) прямоугольных импульсов, а также уровни медленно меняющихся напряжений. Осциллограф может быть использован для: Параметры периодических сигналов
Каждый, снимаемый при помощи осциллографа сигнал может быть описан при помощи следующих основных параметров: Обычно характеристики неисправного устройства сильно отличаются от эталонных,
что позволяет оператору легко и быстро визуально выявить отказавший компонент.
Сигналы переменного тока - анализируются амплитуда, частота и форма сигнала.
Частотно-модулированные сигналы - анализируются амплитуда, частота, форма сигнала и ширина периодических импульсов. Источниками подобных сигналов являются следующие устройства:
Сигналы, модулированные по ширине импульса (ШИМ) - анализируются амплитуда, частота, форма сигнала и скважность периодических импульсов. Источниками подобных сигналов являются следующие устройства:
Кодированная последовательность прямоугольных импульсов - анализируются амплитуда, частота, форма последовательности отдельных импульсов.
Интерпретация сигналов Форма выдаваемого осциллографом сигнала зависит от множества различных факторов и может в значительной мере изменяться. В виду сказанного, прежде чем приступать к замене подозреваемого компонента в случае несовпадения формы снятого диагностического сигнала с эталонной осциллограммой, следует тщательно проанализировать полученный результат:
Напряжение В цепях постоянного тока амплитуда сигнала ограничивается напряжением питания. В качестве примера можно привести цепь системы стабилизации оборотов холостого хода (IAC), сигнальное напряжение которой никак не изменяется с изменением оборотов двигателя. В цепях переменного тока амплитуда сигнала уже однозначно зависит от частоты работы источника сигнала, так, амплитуда сигнала, выдаваемого датчиком положения коленчатого вала (CKP) будет увеличиваться с повышением оборотов двигателя. В виду сказанного, если амплитуда снимаемого при помощи осциллографа сигнала оказывается чрезмерно низкой или высокой (вплоть до обрезания верхних уровней), достаточно лишь переключить рабочий диапазон прибора, перейдя на соответствующую шкалу измерения. Частота Частота повторения сигнальных импульсов зависит от рабочей частоты источника сигналов. Форма снимаемого сигнала может быть отредактирована и приведена к удобному для анализа виду путем переключения на осциллографе масштаба временной развертки изображения.
Как уже говорилось выше, для приведения сигнала к удобочитаемому виду достаточно переключить масштаб временной развертки осциллографа. В некоторых случаях характерные изменения сигнала оказываются развернутыми зеркально относительно эталонных зависимостей, что объясняется реверсивностью полярности подключения соответствующего элемента и, при отсутствии запрета на изменение полярности подключения, может быть проигнорировано при анализе. Типичные сигналы компонентов систем управления двигателем Современные осциллографы обычно оборудованы лишь двумя сигнальными проводами в купе с набором разнообразных щупов, позволяющих осуществить подключение прибора практически к любому устройству. Красный провод подключен к положительному полюсу осциллографа и обычно подсоединяется к клемме электронного модуля управления (ECM). Черный провод следует подсоединять к надежно заземленной точке (массе). Инжекторы Управление составом воздушно-топливной смеси в современных автомобильных электронных системах впрыска топлива осуществляется путем своевременной корректировки длительности открывания электромагнитных клапанов инжекторов. Длительность пребывания инжекторов в открытом состоянии определяется продолжительностью вырабатываемых модулем управления электрических импульсов, подаваемых на вход электромагнитных клапанов. Продолжительность импульсов измеряется в миллисекундах и обычно не выходит за пределы диапазона 1 ÷ 14 мс.
Часто на осциллограмме можно наблюдать также серию коротких пульсаций, следующих непосредственно за инициирующим отрицательным прямоугольным импульсом и поддерживающих электромагнитный клапан инжектора в открытом состоянии, а также резкий положительный бросок напряжения, сопровождающий момент закрывания клапана. Исправность функционирования ECM может быть легко проверена при помощи осциллографа путем визуального наблюдения изменений формы управляющего сигнала при варьировании рабочих параметров двигателя. Так, длительность импульсов при проворачивании двигателя на холостых оборотах должна быть несколько выше, чем при работе агрегата на низких оборотах. Повышение оборотов двигателя должно сопровождаться соответственным увеличением времени пребывания инжекторов в открытом состоянии. Данная зависимость особенно хорошо проявляется при открывании дроссельной заслонки короткими нажатиями на педаль газа.
При холодном запуске двигатель нуждается в некотором обогащении воздушно-топливной смеси, что обеспечивается автоматическим увеличением продолжительности открывания инжекторов. По мере прогрева длительность управляющих импульсов на осциллограмме должна непрерывно сокращаться, постепенно приближаясь к типичному для холостых оборотов значению. В системах впрыска, в которых не применяется инжектор холодного запуска, при холодном запуске двигателя используются дополнительные управляющие импульсы, проявляющиеся на осциллограмме в виде пульсаций переменной длины. В приведенной ниже таблице представлена типичная зависимость длительности управляющих импульсов открывания инжекторов от рабочего состояния двигателя.
Индуктивные датчики
Электромагнитный клапан стабилизации оборотов холостого хода (IAC) В автомобилестроении используются электромагнитные клапаны IAC множества различных типов, выдающих сигналы также различной формы. Общей отличительной чертой всех клапанов является тот факт, что скважность сигнала должна уменьшаться с возрастанием нагрузки на двигатель, связанной с включением дополнительных потребителей мощности, вызывающих понижение оборотов холостого хода. Если скважность осциллограммы изменяется с увеличением нагрузки, однако при включении потребителей имеет место нарушение стабильности оборотов холостого хода, проверьте состояние цепи электромагнитного клапана, а также правильность выдаваемого ECM командного сигнала. Обычно в цепях стабилизации оборотов холостого хода используется 4-полюсный шаговый электродвигатель, описание которого приведено ниже. Проверка 2-контактных и 3-контактных клапанов IAC производится в аналогичной манере, однако осциллограммы выдаваемых ими сигнальных напряжений совершенно непохожи. Шаговый электромотор, реагируя на выдаваемый ECM пульсирующий управляющий сигнал, производит ступенчатую корректировку оборотов холостого хода двигателя в соответствии с рабочей температурой охлаждающей жидкости и текущей нагрузкой на двигатель. Уровни управляющих сигналов могут быть проверены при помощи осциллографа, измерительный щуп которого подключается поочередно к каждой из четырех клемм шагового мотора. Прогрейте двигатель до нормальной рабочей температуры и оставьте его работающим на холостых оборотах. Для увеличения нагрузки на двигатель включите головные фары, кондиционер воздуха, либо, - на моделях с гидроусилителем руля, - поверните рулевое колесо. Обороты холостого хода должны на короткое время упасть, однако тут же вновь стабилизироваться за счет срабатывания клапана IAC. Сравните снятую осциллограмму с приведенной на иллюстрации эталонной.
Лямбда-зонд (кислородный датчик)
Если снимаемый сигнал не является волнообразным, а представляет собой линейную
зависимость, то, в зависимости от уровня напряжения, это свидетельствует о чрезмерном
переобеднении (0 ÷ 0.15 В), либо переобогащении (0.6 ÷ 1 В) воздушно-топливной
смеси.
При недостаточной четкости изображения легонько постучите по блоку цилиндров в районе размещения датчика детонации. Если добиться однозначности формы сигнала не удается, замените датчик KS, либо проверьте состояние электропроводки его цепи. Сигнал зажигания на выходе усилителя
При увеличении оборотов двигателя частота сигнала должна увеличиваться прямо
пропорционально.
Неравномерность бросков может быть вызвана чрезмерным сопротивлением вторичной обмотки, а также неисправностью состояния ВВ провода катушки или свечного провода. |
|